

Integrity ★ Service ★ Excellence

Ultrashort Pulse (USP) Laser – Matter Interactions

5 MAR 2013

Dr. Riq Parra
Program Officer
AFOSR/RTB
Air Force Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an DMB control number.	ion of information. Send comments is arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 05 MAR 2013		2. REPORT TYPE		3. DATES COVE 00-00-2013	red to 00-00-2013	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
Ultrashort Pulse (U	JSP) Laser-Matter I		5b. GRANT NUMBER			
		5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NUMBER			
		5e. TASK NUMBER				
		5f. WORK UNIT NUMBER				
Air Force Office of	erforming organization name(s) and address(es) r Force Office of Scientific Research ,AFOSR/RTB,875 N. andolph,Arlington,VA,22203 8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NOTES Presented at the AFOSR Spring Review 2013, 4-8 March, Arlington, VA.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC						
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	45	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Modelocked femtosecond lasers

2013 AFOSR SPRING REVIEW 30010 PORTFOLIO OVERVIEW

- The program aims to understand and control light sources exhibiting extreme bandwidth, peak power and temporal characteristics.
- Portfolio sub-areas: optical frequency combs, high-field science, attosecond physics.

Applications of USP Lasers

Particle Acceleration ultrahigh electric field gradients

- Table-top GeV electron accelerators
- MeV ion sources for imaging
- Isotope production
- Hadron tumor therapy
- Proton-based fast ignition

USP Lasers Radiation Propagation In Media Acceleration Propagation In Media

Metrology

stabilized, ultra-wide bandwidth

- Ultra-stable freq sources
- Optical waveform synthesis
- High precision spectroscopy
- Frequency/time transfer
- High-capacity comms
- Coherent LIDAR
- Optical clocks
- Calibration

Secondary Radiation Sources generation of particle & photons

- High power THz generation
- Extreme ultraviolet lithography
- Biological soft x-ray microscopy
- Non-destructive evaluation
- Medical imaging/therapy

Propagation in media self-channeling

- Remote sensing
- Remote tagging
- Directed energy
- Electronic warfare
- Countermeasures
- Advanced sonar

Material Science

ultrashort, high peak power

- Surgery
- Chemical analysis (LIBS)
- Surface property modification
- Non-equilibrium ablation
- Micromachining
- Ultrafast photochemistry
- Attochemistry

Outline

- Microresonator-based optical frequency combs

High peak power, ultrashort pulse laser processing of materials

Extreme ultraviolet (EUV) comb spectroscopy

High harmonic interferometry

Relativistic optics

Outline

- Microresonator-based optical frequency combs

High peak power, ultrashort pulse laser processing of materials

Extreme ultraviolet (EUV) comb spectroscopy

High harmonic interferometry

Relativistic optics

Optical frequency combs: Frequency & time domains

Frequency domain

Time domain

Metrological applications of optical frequency combs

Combs in monolithic microresonators

Silica toroids

Silicon nitride microrings

doi: 10.1038/nphoton.2009.259

High-Q mm crystalline resonators

top left doi: 10.1038/nphoton.2012.127 right doi: 10.1103/physreva.84.053833 bottom left doi: 10.1103/physrevlett.101.093902

Octave spanning bandwidths

Why microresonators?

(FY12 BRI) Microresonator-based optical frequency combs

- Initiative aimed at exploring the fundamental physics of microresonator comb generation.
- Six efforts exploring:
 - Spatio-temporal field mapping and control

- Mid-IR microresonators
- Time domain characterization
- Dispersion tailoring via slotted waveguides

Source: http://arxiv.org/abs/1211.1096v3

Temporal and Spectral Comb Generation Dynamics

PI: Alex Gaeta, Cornell

Temporal and Spectral Comb Generation Dynamics

PI: Alex Gaeta, Cornell

Temporal and Spectral Comb Generation Dynamics

PI: Alex Gaeta, Cornell

Transition to modelocking?

Ultrashort Pulses at 99 GHz

PI: Alex Gaeta, Cornell

- 99-GHz repetition rate
- 160-fs pulses

Source: http://arxiv.org/abs/1211.1096v3

Outline

Microresonator-based optical frequency combs

High peak power, ultrashort pulse laser processing of materials

Extreme ultraviolet (EUV) comb spectroscopy

High harmonic interferometry

Relativistic optics

Long laser pulse damages adjacent structures Ultrashort pulses → no collateral damage

Time-dependent processes in materials

High peak power, ultrashort pulse laser processing of materials

PI: Chunlei Guo, U of Rochester

- Ultrashort laser pulses open up novel possibilities and mechanisms for laser-solid interactions.
- Demonstrated femtosecond laser processing and surface texturing techniques to engineer surface structures & properties (e.g. darkened & colorized metals, hydrophilic & hydrophobic surfaces).

(FY13 BRI) High peak power, ultrashort pulse laser processing of materials

- Initiative aimed at developing a fundamental understanding of intense field laser ablation/damage in the femtosecond regime.
- Three multi-PI efforts exploring:
 - Dynamics of ionization
 - Fundamental dynamics of laser ablation
 - Defect states in multi-pulse interaction
 - Effect of structures on laser damage
 - First principle-based models, nonadiabatic quantum MD, classical MD
 - Vary $\lambda = 400$ nm 4 μm, $\tau = 5 1000$ fs
 - Complex beam shapes (Bessel, Airy, vortex, SSTF beams)
 - Novel laser-matter interaction geometries (confined microexplosions, SSTF excitation, few-cycle pulses)

Gratings

Outline

- Microresonator-based optical frequency combs

High peak power, ultrashort pulse laser processing of materials

Extreme ultraviolet (EUV) comb spectroscopy

High harmonic interferometry

Relativistic optics

High Harmonic Generation (HHG)

Microscopic single-atom physics of HHG

2D electron wavepacket quantum simulation

Source: Luis Plaja, U Salamanca

Macroscopic phase-matched harmonic emission

Direct Frequency Comb Spectroscopy in the Extreme Ultraviolet

PI: Jun Ye, U of Colorado

Unpublished

Outline

- Microresonator-based optical frequency combs

High peak power, ultrashort pulse laser processing of materials

Extreme ultraviolet (EUV) comb spectroscopy

High harmonic interferometry

Relativistic optics

High Harmonic Interferometry to follow chemical reactions

Harmonic order

Conical intersections drive the chemistry of complex molecules

PI: Paul Corkum, NRC

Conical Intersection Dynamics in NO₂

PI: Paul Corkum, NRC

Electronic dynamics near a conical intersection

PI: Paul Corkum, NRC

Outline

- Microresonator-based optical frequency combs

High peak power, ultrashort pulse laser processing of materials

Extreme ultraviolet (EUV) comb spectroscopy

High harmonic interferometry

Relativistic optics

Progress in peak intensity

 Over the last two decades, a 6 order of magnitude increase in achieved focused intensities in table-top systems.

Relativistic ions
Nonlinearity of vacuum

GeV e acceleration e+e- production Nuclear reactions

Relativistic plasmas Hard x-ray generation

Tunnel ionization
High temperature plasma formation
Bright x-ray generation

Nonperturbative atomic physics High order nonlinear optics

Perturbative atomic physics Nonlinear Optics

Petawatt class university lasers

University of Texas, 1.1 PW

Ohio State University, 0.5 PW

University of Nebraska, 0.7 PW

University of Michigan, 0.3 PW

Laser-driven x-ray sources

Picture: Courtesy of Kwei--Yu Chu and Lawrence Livermore National Laboratory

PI: Kramer Akli, OSU

- Understanding laser-generated electron beam characteristics is the key to advancing x-ray sources.
- PIC simulations of high intensity short pulse laser interacting with structured targets yields an enhancement in the number and energy of hot electron.
- Monte Carlo simulations using the electron beam source from PIC show enhancement of x-ray production.

Laser-driven x-rays generation (0.1 – 10 MeV)

PI: Donald Umstadter, U of Nebraska

- Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser photon to 1.5 MeV energy.
- Demonstrated > 710 MeV electron beams with no detectable low-energy background.

 $\frac{\text{Conventional Synchrotron}}{\text{fixed magnet undulator}} \\ \theta = 1/\gamma \\ \frac{\text{Thomson Scattering}}{\text{Instance of the properties of the prope$

Energy tunability from 0.1-0.8 GeV.

Monoenergetic: $\Delta E/E \sim 10$ %

Low angular divergence: 1-5 mrad

Laser-driven x-rays generation (0.1 – 10 MeV)

PI: Donald Umstadter, U of Nebraska

Beam	Parameter	Sym	Value	
ω_0	Energy	E_{laser}	0.5 J/ pulse	
	Wavelength	λ	800 nm	
	Pulse duration	$ au_{\scriptscriptstyle S}$	90 fs (FWHM)	
	Spotsize	σ_L	$9.4\pm0.4~\mu m~(RMS)$	
	Number of laser	N_{laser}	34	
	oscillations/pulse		34	
	Average power	P_L	5.6 TW	
	Normalized field		0.4	
	strength	a_0		
	Photon energy	E_L	1.5 eV	
	Interaction angle	Φ	170 deg	
e	Source size	σ_e	$6.0 \pm 2.6 \mu m (RMS)$	
	Cutoff energyi	E_c	250 MeV	
	Divergence ⁱⁱ	θ_e	5 mrad (FWHM)	
	Total charge	Q	120 pC	
γ	Source size	σ_{γ}	$5.1 \pm 2.6 \ \mu m \ (RMS)$	
	Divergence	θ_{γ}	12.7 mrad (FWHM)	
	Peak energy	E_{γ}	1.2 MeV	
	Total photon	M	~10 ⁷	
	number/pulse	N_{γ}		
	Peak on-axis	B_x	2.3 x 1019 photons/s-	
	brilliance		$\mathrm{mm}^2\mathrm{-mrad}^2$ (0.1%	
	brilliance		BW)	

Brighter, more energetic and tunable than conventional synchrotrons

PI: Donald Umstadter, U of Nebraska

(FY14 BRI) Laser-matter interactions in the relativistic optics regime

- Laser-driven electron acceleration
 - Laser Wakefield Acceleration: Electrons are accelerated to gigaelectronvolt (GeV) energies over centimeters distances
 - Direct Light Acceleration

Ion acceleration

- Protons and ions are accelerated to megaelectronvolt (MeV) energies by a mechanism known as 'target normal sheath acceleration' (TNSA)
- X-ray radiation sources
 - keV to MeV x-rays via non-linear Thomson Scattering
 - Κα monochromatic emission
 - Bremsstrahlung broadband radiation

Neutron sources

 Protons incident on a secondary target (e.g. Lithium) can produce MeV neutrons

Electron density distribution and generation of quasimonoenergetic electron bunches observed in PIC simulations.

Target Sheath Normal Acceleration: Laser acceleration of protons from the back side of a microstructured target.

Summary and outlook

The program aims to understand and control light sources exhibiting extreme temporal, bandwidth and peak power characteristics.

Optical frequency combs

- Spectral coverage to exceed an octave with high power/comb.
- Coherence across EUV-LWIR.
- Novel resonator designs (e.g. micro-resonator based).
- Ultra-broadband pulse shaping.
- ..

High-field laser physics high peak powers

- Laser-solid interactions.
- Fs propagation in media.
- Sources of secondary photons.
- Compact particle accelerators.
- High peak power laser architectures.
- High repetition rates.
- New wavelengths of operation.
- ..

Attosecond science

ultrashort pulsewidths

- Efficient, high-flux generation.
- Pump-probe methods.
- Probe atoms/molecules & condensed matter systems.
- Attosecond pulse propagation.
- Novel attosecond experiments.
- Fundamental interpretations of attosecond measurements.
- •

